57 research outputs found

    The accelerating influence of humans on mammalian macroecological patterns over the late Quaternary

    Get PDF
    The transition of hominins to a largely meat-based diet ~1.8 million years ago led to the exploitation of other mammals for food and resources. As hominins, particularly archaic and modern humans, became increasingly abundant and dispersed across the globe, a temporally and spatially transgressive extinction of large-bodied mammals followed; the degree of selectivity was unprecedented in the Cenozoic fossil record. Today, most remaining large-bodied mammal species are confined to Africa, where they coevolved with hominins. Here, using a comprehensive global dataset of mammal distribution, life history and ecology, we examine the consequences of “body size downgrading” of mammals over the late Quaternary on fundamental macroecological patterns. Specifically, we examine changes in species diversity, global and continental body size distributions, allometric scaling of geographic range size with body mass, and the scaling of maximum body size with area. Moreover, we project these patterns toward a potential future scenario in which all mammals currently listed as vulnerable on the IUCN\u27s Red List are extirpated. Our analysis demonstrates that anthropogenic impact on earth systems predates the terminal Pleistocene and has grown as populations increased and humans have become more widespread. Moreover, owing to the disproportionate influence on ecosystem structure and function of megafauna, past and present body size downgrading has reshaped Earth\u27s biosphere. Thus, macroecological studies based only on modern species yield distorted results, which are not representative of the patterns present for most of mammal evolution. Our review supports the concept of benchmarking the “Anthropocene” with the earliest activities of Homo sapiens

    Changes in the diet and body size of a small herbivorous mammal (hispid cotton rat, \u3ci\u3eSigmodon hispidus\u3c/i\u3e) following the late Pleistocene megafauna extinction

    Get PDF
    The catastrophic loss of large-bodied mammals during the terminal Pleistocene likely led to cascading effects within communities. While the extinction of the top consumers probably expanded the resources available to survivors of all body sizes, little work has focused on the responses of the smallest mammals. Here, we use a detailed fossil record from the southwestern United States to examine the response of the hispid cotton rat Sigmodon hispidus to biodiversity loss and climatic change over the late Quaternary. In particular, we focus on changes in diet and body size. We characterize diet through carbon (δ13C) and nitrogen (δ15N) isotope analysis of bone collagen in fossil jaws and body size through measurement of fossil teeth; the abundance of material allows us to examine population level responses at millennial scale for the past 16 ka. Sigmodon was not present at the cave during the full glacial, first appearing at ~16 ka after ice sheets were in retreat. It remained relatively rare until ~12 ka when warming tempera­tures allowed it to expand its species range northward. We find variation in both diet and body size of Sigmodon hispidus over time: the average body size of the population varied by ~20% (90–110 g) and mean δ13C and δ15N values ranged between −13.5 to −16.5‰ and 5.5 to 7.4‰ respectively. A state–space model suggested changes in mass were influenced by diet, maximum temperature and community structure, while the modest changes in diet were most influenced by community structure. Sigmodon maintained a fairly similar dietary niche over time despite contemporaneous changes in climate and herbivore community composition that followed the megafauna extinc­tion. Broadly, our results suggest that small mammals may be as sensitive to shifts in local biotic interactions within their ecosystem as they are to changes in climate and large-scale biodiversity loss

    Model of Dietary Fiber Utilization by Small Mammalian Herbivores, with Empirical Results for Neotoma

    Get PDF
    Allometric considerations have suggested that small herbivores are inefficient at or incapable of extracting energy from the microbial fermentation of structural carbohydrates. This notion is at odds with accumulating empirical evidence that demonstrates well-developed fiber digestion abilities for a number of small rodent genera. To examine the apparent inconsistency, we have constructed a model of plant fiber utilization tailored specifically for hindgut fermenters. Computer simulations provide estimates of fiber and overall dry-matter digestibilities as a function of body size, energy demand, and diet. Our calculations indicate that small mammals can obtain significant benefit from fiber fermentation, especially at moderate fiber levels. Comparisons with literature data are in general agreement, although fiber digestion abilities are still underestimated for the smallest animals. In an empirical test of the model, Neotoma obtained over 21 % of their digestible energy solely from the microbial fermentation of plant fiber. We also observed an interesting pattern of allometric sorting predicted by the model. Smaller wood rats significantly reduced the fiber content of their diet, a behavior presumably reflecting energy limitations

    Body size downgrading of mammals over the late Quaternary

    Get PDF
    Since the late Pleistocene, large-bodied mammals have been extirpated from much of Earth. Although all habitable continents once harbored giant mammals, the few remaining species are largely confined to Africa. This decline is coincident with the global expansion of hominins over the late Quaternary. Here, we quantify mammalian extinction selectivity, continental body size distributions, and taxonomic diversity over five time periods spanning the past 125,000 years and stretching approximately 200 years into the future. We demonstrate that size-selective extinction was already under way in the oldest interval and occurred on all continents, within all trophic modes, and across all time intervals. Moreover, the degree of selectivity was unprecedented in 65 million years of mammalian evolution. The distinctive selectivity signature implicates hominin activity as a primary driver of taxonomic losses and ecosystem homogenization. Because megafauna have a disproportionate influence on ecosystem structure and function, past and present body size downgrading is reshaping Earth’s biosphere. Includes Supplementary materials

    Changes in the diet and body size of a small herbivorous mammal (hispid cotton rat, \u3ci\u3eSigmodon hispidus\u3c/i\u3e) following the late Pleistocene megafauna extinction

    Get PDF
    The catastrophic loss of large-bodied mammals during the terminal Pleistocene likely led to cascading effects within communities. While the extinction of the top consumers probably expanded the resources available to survivors of all body sizes, little work has focused on the responses of the smallest mammals. Here, we use a detailed fossil record from the southwestern United States to examine the response of the hispid cotton rat Sigmodon hispidus to biodiversity loss and climatic change over the late Quaternary. In particular, we focus on changes in diet and body size. We characterize diet through carbon (δ13C) and nitrogen (δ15N) isotope analysis of bone collagen in fossil jaws and body size through measurement of fossil teeth; the abundance of material allows us to examine population level responses at millennial scale for the past 16 ka. Sigmodon was not present at the cave during the full glacial, first appearing at ~16 ka after ice sheets were in retreat. It remained relatively rare until ~12 ka when warming tempera­tures allowed it to expand its species range northward. We find variation in both diet and body size of Sigmodon hispidus over time: the average body size of the population varied by ~20% (90–110 g) and mean δ13C and δ15N values ranged between −13.5 to −16.5‰ and 5.5 to 7.4‰ respectively. A state–space model suggested changes in mass were influenced by diet, maximum temperature and community structure, while the modest changes in diet were most influenced by community structure. Sigmodon maintained a fairly similar dietary niche over time despite contemporaneous changes in climate and herbivore community composition that followed the megafauna extinc­tion. Broadly, our results suggest that small mammals may be as sensitive to shifts in local biotic interactions within their ecosystem as they are to changes in climate and large-scale biodiversity loss

    The sensitivity of Neotoma to climate change and biodiversity loss over the late Quaternary

    Get PDF
    The late Quaternary in North America was marked by highly variable climate and considerable biodiversity loss including a megafaunal extinction event at the terminal Pleistocene. Here, we focus on changes in body size and diet in Neotoma (woodrats) in response to these ecological perturbations using the fossil record from the Edwards Plateau (Texas) across the past 20,000 years. Body mass was estimated using measurements of fossil teeth and diet was quantified using stable isotope analysis of carbon and nitrogen from fossil bone collagen. Prior to ca. 7,000 cal yr BP, maximum mass was positively correlated to precipitation and negatively correlated to temperature. Independently, mass was negatively correlated to community composition, becoming more similar to modern over time. Neotoma diet in the Pleistocene was primarily sourced from C3 plants, but became progressively more reliant on C4 (and potentially CAM) plants through the Holocene. Decreasing population mass and higher C4/CAM consumption was associated with a transition from a mesic to xeric landscape. Our results suggest that Neotoma responded to climatic variability during the terminal Pleistocene through changes in body size, while changes in resource availability during the Holocene likely led to shifts in the relative abundance of different Neotoma species in the community

    Late Pleistocene megafauna extinction leads to missing pieces of ecological space in a North American mammal community

    Get PDF
    The conservation status of large-bodied mammals is dire. Their decline has serious consequences because they have unique ecological roles not replicated by smaller-bodied animals. Here, we use the fossil record of the megafauna extinction at the terminal Pleistocene to explore the consequences of past biodiversity loss. We characterize the isotopic and body-size niche of a mammal community in Texas before and after the event to assess the influence on the ecology and ecological interactions of surviving species (\u3e1 kg). Preextinction, a variety of C4 grazers, C3 browsers, and mixed feeders existed, similar to modern African savannas, with likely specialization among the two sabertooth species for juvenile grazers. Postextinction, body size and isotopic niche space were lost, and the δ13C and δ15N values of some survivors shifted. We see mesocarnivore release within the Felidae: the jaguar, now an apex carnivore, moved into the specialized isotopic niche previously occupied by extinct cats. Puma, previously absent, became common and lynx shifted toward consuming more C4-based resources. Lagomorphs were the only herbivores to shift toward C4 resources. Body size changes from the Pleistocene to Holocene were species-specific, with some animals (deer, hare) becoming significantly larger and others smaller (bison, rabbits) or exhibiting no change to climate shifts or biodiversity loss. Overall, the Holocene body-size-isotopic niche was drastically reduced and considerable ecological complexity lost. We conclude biodiversity loss led to reorganization of survivors and many “missing pieces” within our community; without intervention, the loss of Earth’s remaining ecosystems that support megafauna will likely suffer the same fate

    Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly

    Get PDF
    Recent studies connecting the decline of large predators and consumers with the disintegration of ecosystems often overlook that this natural experiment already occurred. As recently as 14 ka, tens of millions of large-bodied mammals were widespread across the American continents. Within 1000 yr of the arrival of humans, ∼80% were extinct including all \u3e 600 kg. While the cause of the late Pleistocene (LP) extinction remains contentious, largely overlooked are the ecological consequences of the loss of millions of large-bodied animals. Here, we examine the influence of the LP extinction on a local mammal community. Our study site is Hall’s Cave in the Great Plains of Texas, which has unparalleled fine-grained temporal resolution over the past 20 ka, allowing characterization of the community before and after the extinction. In step with continental patterns, this community lost 80% of large-bodied herbivores and 20% of apex predators at the LP extinction. Using tightly constrained temporal windows spanning full glacial to modern time periods and comprehensive faunal lists, we reconstruct mammal associations and body size distributions over time. We find changes in alpha and beta diversity, and in the statistical moments associated with periods of climate change as well as with the LP extinction event. Additionally, there is a fundamental change in the composition of herbivores, with grazers being replaced by frugivores/granivores starting about 15 ka; the only large-bodied grazer remaining today is the bison Bison bison. Moreover, the null model program PAIRS reveals interesting temporal patterns in the disassociation or co-occurrence of species through the terminal Pleistocene and Holocene. Extinct species formed more significant associations than modern ones, and formed more aggregated pairs than do modern species. Further, negative species associations were about three times stronger than positive

    BIBLE A whole-air sampling as a window on Asian biogeochemistry

    Get PDF
    Asian trace gas and aerosol emissions into carbon, nitrogen, and other elemental cycles will figure prominently in near term Earth system evolution. Atmospheric hydrocarbon measurements resolve numerous chemical species and can be used to investigate sourcing for key geocarriers. A recent aircraft study of biomass burning and lightning (BIBLE A) explored the East Asian atmosphere and was unique in centering on the Indonesian archipelago. Samples of volatile organics taken over/between the islands of Japan, Saipan, Java, and Borneo are here examined as a guide to whole-air-based studies of future Asian biogeochemistry. The midlatitude onshore/offshore pulse and tropical convection strongly influence concentration distributions. As species of increasing molecular weight are considered, rural, combustion, and industrial source regimes emerge. Methane-rich inputs such as waste treatment and rice cultivation are evidenced in the geostrophic outflow. The Indonesian atmosphere is rich in biomass burning markers and also those of vehicular activity. Complexity of air chemistry in the archipelago is a direct reflection of diverse topography, land use, and local economies in a rapidly developing nation. Conspicuous in its absence is the fingerprint for liquefied petroleum gas leakage, but it can be expected to appear as demand for clean fossil fuels rises along with per capita incomes. Combustion tracers indicate high nitrogen mobilization rates, linking regional terrestrial geocycles with open marine ecosystems. Sea to air fluxes are superimposed on continental and marine backgrounds for the methyl halides. However, ocean hot spots are not coordinated and suggest an intricate subsurface kinetics. Levels of long-lived anthropogenic halocarbons attest to the success of international environmental treaties while reactive chlorine containing species track industrial air masses. The dozens of hydrocarbons resolvable by gas chromatographic methods will enable monitoring of upcoming Asian modernization. Crucial uncertainties are underscored. Signatures for Asian combustion processes and megacities have been obtained only indirectly or at a distance. Detailed fingerprinting must be combined with regular aircraft and ground station measurements to maximize utility of the database

    Body Mass of Late Quaternary Mammals (Data Set)

    Get PDF
    The purpose of this data set was to compile body mass information for all mammals on Earth so that we could investigate the patterns of body mass seen across geographic and taxonomic space and evolutionary time. We were interested in the heritability of body size across taxonomic groups (How conserved is body mass within a genus, family, and order?), in the overall pattern of body mass across continents (Do the moments and other descriptive statistics remain the same across geographic space?), and over evolutionary time (How quickly did body mass patterns iterate on the patterns seen today? Were the Pleistocene extinctions size specific on each continent, and did these events coincide with the arrival of man?). These data are also part of a larger project that seeks to integrate body mass patterns across very diverse taxa (NCEAS Working Group on Body Size in Ecology and Paleoecology: linking pattern and process across space, time, and taxonomic scales). We began with the updated version of D. E. Wilson and D. M. Reeder’s taxonomic list of all known Recent mammals of the world (N 5 4629 species) to which we added status, distribution, and body mass estimates compiled from the primary and secondary literature. Whenever possible, we used an average of male and female body mass, which was in turn averaged over multiple localities to arrive at our species body mass values. The sources are line referenced in the main data set, with the actual references appearing in a table within the metadata. Mammals have individual records for each continent they occur on. Note that our data set is more than an amalgamation of smaller compilations. Although we relied heavily on a data set for Chiroptera by K. E. Jones (N 5 905), the CRC handbook of Mammalian Body Mass (N 5 688), and a data set compiled for South America by P. Marquet (N 5 505), these represent less than half the records in the current database. The remainder are derived from more than 150 other sources. Furthermore, we include a comprehensive late Pleistocene species assemblage for Africa, North and South America, and Australia (an additional 230 species). ‘‘Late Pleistocene’’ is defined as approximately 11 ka for Africa, North and South America, and as 50 ka for Australia, because these times predate anthropogenic impacts on mammalian fauna. Estimates contained within this data set represent a generalized species value, averaged across sexes and geographic space. Consequently, these data are not appropriate for asking population-level questions where the integration of body mass with specific environmental conditions is important. All extant orders of mammals are included, as well as several archaic groups (N 5 4859 species). Because some species are found on more than one continent (particularly Chiroptera), there are 5731 entries. We have body masses for the following: Artiodactyla (280 records), Bibymalagasia (2 records), Carnivora (393 records), Cetacea (75 records), Chiroptera (1071 records), Dasyuromorphia (67 records), Dermoptera (3 records), Didelphimorphia (68 records), Diprotodontia (127 records), Hydracoidea (5 records), Insectivora (234 records), Lagomorpha (53 records), Litopterna (2 records), Macroscelidea (14 records), Microbiotheria (1 record), Monotremata (7 records), Notoryctemorphia (1 record), Notoungulata (5 records), Paucituberculata (5 records), Peramelemorphia (24 records), Perissodactyla (47 records), Pholidota (8 records), Primates (276 records), Proboscidea (14 records), Rodentia (1425 records), Scandentia (15 records), Sirenia (6 records), Tubulidentata (1 record), and Xenarthra (75 records)
    corecore